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Abstract

A semi-infinite elastic solid subjected to line loading is considered with higher order boundary conditions is utilized

to obtain a general solution in terms of Fourier integral transforms for a symmetrical line loading with prescribed

normal tractions. The boundary conditions are obtained by variational method and shown that they differ from the

boundary conditions reported in the literature for the simple theory. Closed form solutions are then obtained for a

concentrated normal force (the Flamant problem), for constant normal traction, and a typical Hertzian normal traction

distribution from classical elasticity. It is verified that undesirable displacement singularity predicted by classical

elasticity in the Flamant problem is eliminated by the gradient elasticity solution. The solution for constant normal

tractions also illustrate the capability of gradient elasticity to predict size effect by taking into account the effect of

micro-structure, which classical elasticity does not adequately describe.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For linear elastic materials with micro-structure, Mindlin’s generalized elasticity theory (Mindlin, 1964,

1965) provides a general framework for developing strain–gradient theories. Mindlin’s generalized elasticity

theory has been widely used to revisit problems where classical elasticity yields physically undesirable re-

sults. For example, Vardoulakis and Georgiadis (1997) have shown the existence of SH surface waves in a
homogeneous half-space within the framework of the generalized linear theory of elasticity, which cannot

be predicted by the classical theory of linear elasticity. They also investigated the anti-plane shear Lamb’s

problem (Georgiadis and Vardoulakis, 1998). Zhang et al. (1998) used the couple stress theory (Toupin,

1962; Koiter, 1964; Mindlin, 1964, 1965) to obtain the mode III full-field solution in elastic materials with

strain gradient effects, and they showed that their evaluation results in a finite crack tip energy release rate

which when evaluated by classical theory leads to an infinite value. Altan and Aifantis (1992) used a simple
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gradient theory of elasticity to solve the mode-III crack problem and found that the gradient theory can

eliminate the undesirable singularity at the crack tip. Aifantis (1996) has shown that the gradient theory can

successfully be used to interpret size effects exhibited by elastic boreholes and twisted wires. Within the

context of the simple gradient theory of elasticity, Gutkin (2000) described the elastic property of dislo-
cation and disclinations. The main achievement made in this approach is the elimination of the classical

singularities at the defect line and the possibility of describing short-range interactions between defects on a

nanoscale level.

The modification of the constitutive equation proposed by Mindlin (1965) within the framework of

gradient elasticity reads
r ¼ kðI� c1Ir2 � c2rrÞðtr eÞ þ 2Gð1� c3r2Þe; ð1Þ
where k and G are the Lame’s constants, r and e denote elastic stress and strain tensors, respectively, I is the
unit tensor, r2 is the Laplacian operator, and c1, c2 and c3 are three independent material constants.

The above formulation involves five elastic constants, and application of it to practical situations poses

difficulties. A simplification to Eq. (1) was proposed by Altan and Aifantis (1992) who considered the

special case, c1 ¼ c3 ¼ c, and c2 ¼ 0. Hence, with this simplification, Eq. (1) becomes
r ¼ kðtr eÞIþ 2Ge � cr2½kðtr eÞIþ 2Ge�: ð2Þ
Altan and Aifantis (1992) used Eq. (2), along with the equilibrium equation, divr ¼ 0 , to solve the mode-
III crack problem and found that the strain is finite at the crack tip. They also showed that for an atomic

lattice, the gradient coefficient c can be estimated as c ¼ ð0:25hÞ2, where h is the lattice constant. More

generally, 2h is the characteristic length of the material cell for materials with unit cell (micro-medium),

which may be interpreted as the periodic structure of a crystal lattice, a molecule of a polymer, a crystallite

of a polycrystalline or a grain of a granular material (Mindlin, 1964). Internal characteristic length h is

typically of the order of 10�8 m for some crystal lattices, and 10�4 m for some granular materials

(Vardoulakis and Georgiadis, 1997). Hence, the value of c covers a large range for materials with different

size of micro-medium. The determination of c by experiments is currently under way.
Constitutive Eq. (2) and equilibrium equation divr ¼ 0 can also be obtained from Casal’s continuum

(1972) in absence of surface energy, in which higher order stresses are the work conjugate of strain gradient

variation. In this way, the boundary conditions are obtained by means of the variational method from

Casal’s continuum in the absence of double traction on the boundary surface y¼ constant (Appendix A) as
kd2jo2ell þ 2Go2e2j ¼ 0: ð3Þ
In the terms of the components of displacement field ðu; vÞ for the plane strain problem, Eq. (3) yields
u;yy þ v;xy ¼ 0; ð4Þ

kðu;xy þ v;yyÞ þ 2Gv;yy ¼ 0: ð5Þ
The extra boundary conditions (4) and (5) are different from those used in the simple strain gradient theory

of elasticity (Altan and Aifantis, 1992; Ru and Aifantis, 1993) in which it is assumed that second partial

derivative of displacement normal to the boundary is zero (o
2u
on2 ¼ 0), or
u;yy ¼ 0; ð6Þ

v;yy ¼ 0 ð7Þ
for boundary y¼ constant. Although the boundary condition (o
2u
on2 ¼ 0) has been used in the literature, the

authors were not able to find any discussion explaining how they were obtained. Eqs. (6) and (7) imply that

v;xy can be neglected with respect to u;yy , and u;xy can be neglected with respect to v;yy . Since these conditions
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in general cannot be justified, the boundary conditions (4) and (5) are used in the solutions presented in this

paper.

Ru and Aifantis (1993) later proposed a simple approach to solve boundary-value problems using the

simple gradient theory of elasticity and established a simple relationship between the ‘‘gradient’’ dis-
placement and the ‘‘classical’’ displacement for a traction-prescribed boundary-value problem as
ð1� cr2Þu ¼ u0; ð8Þ

where u is the displacement field considering gradient theory of elasticity, and u0 is the displacement field

considering classical theory of elasticity.

One of the particular problems Ru and Aifantis (1993) solved using Eq. (8) with the boundary conditions

(6) and (7) is the Flamant problem. By their approach, one extra boundary condition was needed to obtain

a closed form solution for this problem. The solution obtained by them is complicated which makes it

difficult to obtain a closed form solution for arbitrary line loading by superposition of the fundamental

solution of the Flamant problem. In this paper, instead of superposition and boundary conditions (6) and

(7), Fourier integral transforms with boundary condition (4) and (5) are used to obtain a general solution
for a symmetrical line loading with prescribed normal tractions. The solution for the Flamant problem is

then derived from the general solution as a special case without the need for any extra boundary conditions.

In what follows, a plane strain problem for a symmetrical line loading with prescribed normal tractions

on a semi-infinite elastic solid is considered using gradient elasticity. The Navier equations of equilibrium of

the plane strain problem are solved systematically using integral transformation techniques and general

solutions for the plane strain problem are obtained using boundary conditions (4) and (5). The analytical

solutions for the Flamant problem are derived from the general solutions to demonstrate how gradient

elasticity can eliminate the singularity at the point of application of the load as predicted by classical
elasticity. The analytical solutions obtained for constant normal tractions are also derived and compared

with the classical solution. The solutions are used to demonstrate the influence of the gradient coefficient c
on the deformation under constant normal traction and the size-dependency of the resulting deformation,

i.e. the displacement normalized by length over which the load is applied becomes smaller with decreasing

the length, a trend different from size-independency implied by classical elasticity.
2. Formulation for plane strain problem

The displacement field for the plane strain problem is assumed to be of the form
u ¼ uðx; yÞ; v ¼ vðx; yÞ and w 	 0: ð9Þ

The components of strain tensor corresponding to these displacements are
ex ¼
ou
ox

; ey ¼
ov
oy

; 2cxy ¼
ou
oy

þ ov
ox

; ez ¼ 0; cxz ¼ 0 and cyz ¼ 0: ð10Þ
The constitutive Eq. (2) can be rewritten as
rij ¼ kekkdij þ 2Geij � cfkekkdij þ 2Geijg;mm ð11Þ
and the components of the stress tensor are
rx ¼ kðex þ eyÞ þ 2Gex � cfkðex þ eyÞ þ 2Gexg;mm ; ð12Þ

ry ¼ kðex þ eyÞ þ 2Gey � cfkðex þ eyÞ þ 2Geyg;mm ; ð13Þ

rz ¼ kðex þ eyÞ � cfkðex þ eyÞg;mm ; ð14Þ
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sxy ¼ 2Gexy � 2Gcfexyg;mm ð15Þ

and
sxz ¼ 0; syz ¼ 0:
Substitution of the stresses rij into the equilibrium equations in the absence of body forces
rij;j ¼ 0 ð16Þ

yields
k
o2u
ox2

�
þ o2v
oxoy

�
þ 2G

o2u
ox2

� cr2 o2u
ox2

��
þ o2v
oxoy

�
þ 2G

o2u
ox2

�
þ G

o2u
oy2

�
þ o2v
oxoy

�

� cGr2 o2u
oy2

�
þ o2v
oxoy

�
¼ 0; ð17Þ

k
o2u
oxoy

�
þ o2v
oy2

�
þ 2G

o2v
oy2

� cr2 k
o2u
oxoy

��
þ o2v
oy2

�
þ 2G

o2v
oy2

�
þ G

o2u
oxoy

�
þ o2v
ox2

�

� cGr2 o2u
oxoy

�
þ o2v
ox2

�
¼ 0: ð18Þ
Taking Fourier transformation of Eqs. (17) and (18) and rearranging the results along with the relationship
Z 1

�1
r2f ðx; yÞeinx dx ¼ d2

dy2

�
� n2

�Z 1

�1
f ðx; yÞeinx dx; ð19Þ
the following equations are obtained:
�G c
d4�u
dy4

"
� ð1þ cn2Þ d

2�u
dy2

#
þ ðk þ 2GÞn2 c

d2�u
dy2

"
� ð1þ cn2Þ�u

#
þ ðk
(

þ GÞn c
d3�v
dy3

"
� ð1þ cn2Þ d�v

dy

#)
i ¼ 0;

ð20Þ

�ðk þ 2GÞ c
d4�v
dy4

"
� ð1þ cn2Þ d

2�v
dy2

#
þ Gn2 c

d2�v
dy2

"
� ð1þ cn2Þ�v

#
þ ðk
(

þ GÞn c
d3�u
dy3

"
� ð1þ cn2Þ d�u

dy

#)
i ¼ 0;

ð21Þ

where
�uðn; yÞ ¼
Z 1

�1
uðx; yÞeinx dx;

�vðn; yÞ ¼
Z 1

�1
vðx; yÞeinx dx;
are the Fourier transforms of uðx; yÞ and vðx; yÞ, with the inverse transforms
uðx; yÞ ¼ 1

2p

Z 1

�1
�uðn; yÞe�inx dn;

vðx; yÞ ¼ 1

2p

Z 1

�1
�vðn; yÞe�inx dn;
and i ¼
ffiffiffiffiffiffiffi
�1

p
.
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Letting
P ¼ c
d2�u
dy2

� ð1þ cn2Þ�u ð22Þ
and
Q ¼ c
d2�v
dy2

� ð1þ cn2Þ�v: ð23Þ
Eqs. (20) and (21) become
�G
d2P
dy2

þ ðk þ 2GÞn2P þ ðk þ GÞndQ
dy

i ¼ 0 ð24Þ
and
�ðk þ 2GÞd
2Q
dy2

þ Gn2Qþ ðk þ GÞndP
dy

i ¼ 0: ð25Þ
From Eqs. (24) and (25), it follows that
d2

dy2

�
� n2

�2

P ¼ 0 and
d2

dy2

�
� n2

�2

Q ¼ 0:
So
P ¼ ða1 þ a2yÞejnjy þ ða3 þ a4yÞe�jnjy ð26Þ
and
Q ¼ ða5 þ a6yÞejnjy þ ða7 þ a8yÞe�jnjy ; ð27Þ
where a1–a8 are constants.
The expressions of �u and �v can be derived from Eqs. (22), (23), (26) and (27), along with the condition

that �u and �v both go to zero as y goes to infinity
�u ¼ l1e�
ffiffiffiffiffiffiffiffiffi
1
cþn2y

p
þ ðk1 þ k2yÞe�jnjy ð28Þ
and
�v ¼ l2e�
ffiffiffiffiffiffiffiffiffi
1
cþn2y

p
þ ðk3 þ k4yÞe�jnjy : ð29Þ
Here l1, l2, k1, k2, k3, k4 are functions of n.
Taking Fourier transformation of Eqs. (12), (13), (15) and using Eqs. (28) and (29) yields the stress

components in the transformed domain as
�rx ¼ k½ð1� 2cn2 � jnjyÞk4 � k3jnj�e�jnjy � ðk þ 2GÞn½ð2cjnj þ yÞk2 þ k1�e�jnjy i; ð30Þ

�ry ¼ ðk þ 2GÞ½ð1� 2cn2 � jnjyÞk4 � k3jnj�e�jnjy � kn½ð2cjnj þ yÞk2 þ k1�e�jnjy i ð31Þ
and
�sxy ¼ G½ð1� 2cn2 � jnjyÞk2 � k1jnj�e�jnjy � Gn½ð2cjnj þ yÞk4 þ k3�e�jnjy i: ð32Þ
Also, when �u and �v, given in Eqs. (28) and (29), respectively, are substituted in Eqs. (20) and (21) the

relationship between k1, k2, k3 and k4 are obtained as
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k2 ¼ Sign ðnÞk4i ð33Þ

and
k þ 3G
k þ G

k2 � nk3iþ Sign ðnÞk1 ¼ 0: ð34Þ
3. General solution for semi-infinite elastic solid subjected to a symmetrical line loading

In this section the deformation of a semi-infinite elastic solid body subjected to an external pressure at its

bounding surface is considered. The elastic medium is bounded by a plane of infinite extent y ¼ 0 as shown
in Fig. 1. The y-axis is taken normal to the plane of the otherwise unbounded medium and points into the

semi-infinite medium. It is assumed that this domain is under the action of a surface pressure p applied

along the x-axis, which varies along the surface.

For simplicity, pðxÞ is taken as an even function of x which results in symmetrical deformations, i.e.,
uð�x; yÞ ¼ �uðx; yÞ ð35Þ

and
vð�x; yÞ ¼ vðx; yÞ: ð36Þ
The symmetrical deformation field then in turn leads to
k1ð�nÞ ¼ �k1ðnÞ; k2ð�nÞ ¼ �k2ðnÞ; l1ð�nÞ ¼ �l1ðnÞ;

k3ð�nÞ ¼ k3ðnÞ; k4ð�nÞ ¼ k4ðnÞ; l2ð�nÞ ¼ l2ðnÞ
and
u ¼ �i

p

Z 1

0

�uðn; yÞ sinðnxÞdn; ð37Þ
Fig. 1. Semi-infinite elastic solid subjected to an even surface pressure pðxÞ.
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v ¼ 1

p

Z 1

0

�vðn; yÞ cosðnxÞdn: ð38Þ
The relevant traction boundary conditions are adopted as
ry ¼ �pðxÞ; ð39Þ

sxy ¼ 0; ð40Þ
at y ¼ 0.
Eq. (40) results in
ð1� 2cn2Þk2 � nk1 � nð2nck4 þ k3Þi ¼ 0: ð41Þ
Hence, the coefficients k1, k2, k3 are solved in terms of k4 using Eqs. (33), (34), and (41) for n P 0
k1 ¼ � 2cn2

�
þ G

k þ G

�
i

n
k4; ð42Þ

k2 ¼ k4i; ð43Þ

k3 ¼
�
� 2cn2 þ k þ 2G

k þ G

�
1

n
k4: ð44Þ
Subsequently, the boundary condition (39) together with the expressions for k1, k2, k3 in terms of k4 and Eq.
(31), yields the stress components ry at y ¼ 0 as
ry ¼
1

p

Z 1

0

�ry cosðnxÞdn ¼ � 2G
p

Z 1

0

k4ðnÞ cosðnxÞdn: ð45Þ
Hence
Z 1

0

k4ðnÞ cosðnxÞdn ¼ ppðxÞ
2G

ð46Þ
and the expression for k4 can be obtained as
k4ðnÞ ¼
1

G

Z 1

0

pðxÞ cosðnxÞdx: ð47Þ
To solve for the constants l1 and l2, the extra gradient boundary conditions (4) and (5) are required as a

result of the higher gradient terms utilized.

Eqs. (4) and (5), together with Eqs. (28), (29) and (37), (38), yield
i
1

c

�
þ n2

�
l1 � n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c
þ n2

r
l2 þ in2k1 � 2ink2 � n2k3 þ nk4 ¼ 0 ð48Þ
and
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c
þ n2

r
l1 þ ðk þ 2GÞ 1

c

�
þ n2

�
l2 þ ikn2k1 � iknk2 þ ðk þ 2GÞn2k3 � 2ðk þ 2GÞnk4 ¼ 0; ð49Þ
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which implies
l1ðnÞ ¼ ic
2ðk þ 2GÞn

k

kð1þ 2cn2Þ þ 2cGn
ffiffiffiffiffiffiffiffiffiffiffiffi
1
c þ n2

q
k þ 2Gþ 2cðk þ GÞn2

2
64 � 4Gn2

k
ffiffiffiffiffiffiffiffiffiffiffiffi
1
c þ n2

q
3
75k4 ð50Þ
and
l2ðnÞ ¼
2cn2

�
kð1þ 2cn2Þ þ 2cGn

ffiffiffiffiffiffiffiffiffiffiffiffi
1
c þ n2

q �

½k þ 2Gþ 2cðk þ GÞn2�
ffiffiffiffiffiffiffiffiffiffiffiffi
1
c þ n2

q k4: ð51Þ
Substitution of Eqs. (42)–(44) into Eqs. (30)–(32) for nP 0 and taking inverse Fourier transforms yields the

stress components as
rx ¼ � 2G
p

Z 1

0

k4ð1� nyÞe�ny cosðnxÞdn; ð52Þ

ry ¼ � 2G
p

Z 1

0

k4ð1þ nyÞe�ny cosðnxÞdn; ð53Þ

sxy ¼ � 2Gy
p

Z 1

0

nk4e�ny sinðnxÞdn; ð54Þ
which show that stress distribution is only dependent on k4, and k4 is not related with the extra gradient

boundary conditions. From Eq. (47) it can be seen that k4 is a function of the loading pðxÞ. Hence, the stress

distribution obtained here remains the same as the one in classical elasticity. Ru and Aifantis (1993) have

shown that the stress distribution obtained with the boundary conditions (6) and (7) was identical with the

one in classical elasticity also. However, the displacement field dependent which is dependent on l1 and l2
will differ for the two sets of boundary conditions.

Particularly, the surface displacement u and v may be derived by substituting Eqs. (42)–(44) and (50),
(51) into Eqs. (28) and (29), and using Eqs. (37) and (38) at y ¼ 0:
uðx; 0Þ ¼ � i

p

Z 1

0

l1ðnÞ � 2icnk4ðnÞ � i
G

k þ G
1

n
k4ðnÞ

� �
sinðnxÞdn ð55Þ
and
vðx; 0Þ ¼ 1

p

Z 1

0

l2ðnÞ � 2cnk4ðnÞ þ
k þ 2G
k þ G

1

n
k4ðnÞ

� �
cosðnxÞdn: ð56Þ
It can be shown that the surface displacements represented by Eqs. (55) and (56) reduce to the classical

solution at c ¼ 0. Once k4 is obtained, the surface displacements due to arbitrary symmetrical line loading

with prescribed normal traction can be obtained from Eqs. (55) and (56). The solution for three typical

surface pressure distributions are shown in the following.
4. Solutions for special surface pressure distributions

As special cases to the above general solution, the problem with a typical Hertzian pressure distribution
in classical elasticity for jxj6 a, the Flamant problem and constant pressure for jxj6 a will be discussed (see

Fig. 2).
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y
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x
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Fig. 2. Special surface pressure distribution: (a) a typical Hertzian pressure distribution; (b) concentrated force; (c) constant surface

pressure.
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4.1. A Hertzian pressure distribution for jxj6 a from classical elasticity

A typical Hertzian pressure distribution pðxÞ (Johnson, 1985) on the surface in classical elasticity is
defined by the relation
pðxÞ ¼ p0 1� x2

a2

� �1=2

jxj6 a;

pðxÞ ¼ 0 jxj > a:

(

Substituting this pressure distribution into Eq. (47), k4 is solved as
k4ðnÞ ¼
pp0J1ðanÞ

2Gn
: ð57Þ
The surface displacements are determined by substituting k4 from Eq. (57) into Eqs. (50), (51) and Eqs. (55),

(56).

4.2. Flamant problem

For the Flamant problem, a point force of magnitude p acts at the origin of the coordinate system on the

boundary surface. For this case, k4 can be calculated from Eq. (47) by assuming p acting over a length of 2a

ðjxj < aÞ and then letting a ! 0, i.e.
k4ðnÞ ¼ lim
a!0

1

G

Z a

0

p
2a

cosðnxÞdx ¼ p
2G

:

The components of the surface displacement are obtained by substituting the expression k4 into Eqs. (50),
(51) and Eqs. (55), (56). Due to their complicated form, the expressions for surface displacements are not

given here. It is shown that the surface displacement in y direction be finite at the origin ð0; 0Þ in Section 5.
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It should be noted that the gradient elasticity solution reduces to the classical elasticity solution

(Johnson, 1985) by letting c ¼ 0 in Eqs. (55) and (56), considering kþ2G
GðkþGÞ ¼

4ð1�m2Þ
E , 1

kþG ¼ 2ð1þmÞð1�2mÞ
E .
uðx; 0Þ ¼ �ð1� 2mÞð1þ mÞp
2E

; ð58Þ

vðx; 0Þ ¼ 2ð1� m2Þ
pE

p log xþ C0: ð59Þ
Hence, the gradient elasticity solution to the Flamant problem is obtained relatively easily using the integral

transformation techniques, and the singularity at the origin predicted by the classical elasticity solution

disappears.

4.3. Constant surface pressure for jxj6 a
pðxÞ ¼ p0 jxj6 a:
In like fashion,
k4ðnÞ ¼
p0 sinðanÞ

Gn
: ð60Þ
The surface displacements obtained by substituting the expression k4 into Eqs. (50), (51) and Eqs. (55), (56)

are evaluated by using MATHEMATICA in Section 5.

The gradient elasticity solution reduces to the classical elasticity solution (Johnson, 1985) by letting c ¼ 0

in Eqs. (55), (56).
uðx; 0Þ ¼

�p0ð1þmÞð1�2mÞ
E x; jxj6 a;

�p0ð1þmÞð1�2mÞ
E a; x > a;

p0ð1þmÞð1�2mÞ
E a; x < �a:

8>><
>>:
and
vðx; 0Þ ¼ �p0ð1� m2Þ
pE

ðx
�

þ aÞ log xþ a
a

� �2

� ðx� aÞ log x� a
a

� �2
�
þ C:
5. The results

The surface displacement in y direction due to the typical Hertzian pressure distribution (p0 ¼ 150 GN/

m, loading length 2a ¼ 1:0 lm) and classical one are plotted in Fig. 3 for an elastic solid with E ¼ 135 GPa,

m ¼ 0:3, c ¼ 0:05 lm2. The value of c chosen is in the range of given for some materials in the paper
(Vardoulakis and Georgiadis, 1997). The x distance and the displacement are normalized by a. It is shown
in Fig. 3 that the normalized deformed depth at origin in gradient elasticity is smaller than the one in

classical elasticity.

To illustrate the gradient theory can eliminate the undesirable singularity for the Flamant problem, the

solutions in the y direction for the Flamant problem and classical one are plotted in Fig. 4 for the same

elastic solid as in Fig. 3. It is assumed that the displacement in the y direction on the surface is zero at a

distance x0 ¼ 1:0 lm. The x distance and the displacement are normalized by x0 and
2ð1�m2Þ

pE p. i.e. the g ¼ x
x0
,

the normalized displacement in y direction V ðg; 0Þ ¼ pE
2ð1�m2Þ vðx; 0Þ. Fig. 4 shows that the displacement at the

origin is finite, and also dvð0;0Þ
dx ¼ 0, i.e. the symmetry of displacement with respect to x-axis is naturally



Fig. 3. Comparison of the surface displacement between gradient solution and the classical solution for Hertzian pressure distribution

with loading length 2a ¼ 1 lm.

Fig. 4. Comparison of the surface displacement between gradient solution and the classical solution for Flamant problem.

S. Li et al. / International Journal of Solids and Structures 41 (2004) 3395–3410 3405
satisfied. Ru and Aifantis (1993) had to use this symmetry as an extra boundary condition to achieve the

solution, through their simple approach with the boundary condition (6) and (7).

The deformed surface profiles in Fig. 5(a) are plotted by using the classical solutions for the same elastic

solid subjected to the same constant pressure (p0 ¼ 150 GN/m) applied over a length of 2a where a is varied
from 0.2 to 1.0 lm. After being normalized by half pressure loading length a, the plots of the depth vðx; 0Þ=a
vs. position x=a all lie on the same curve irrespective of the length 2a as shown in Fig. 5(b). Classical

elasticity, by its scale-free nature, cannot predict the size-dependency of the resulting deformation.

In gradient elasticity, the solution obtained is used to demonstrate size-dependency of the resulting
deformation. The deformed surface profiles in Fig. 6 are plotted by using the analytical solutions for the

same elastic solid as in Fig. 3 subjected to the same pressure applied over the length of 2a. The curves in



Fig. 5. (a) The deformed surface profiles for several loading length 2a as predicted by classical elasticity. (b) Normalized deformed

surface profiles due to constant pressure for several loading lengths 2a as predicted by classical elasticity.

3406 S. Li et al. / International Journal of Solids and Structures 41 (2004) 3395–3410
Fig. 6 were generated with a constant gradient coefficient c ¼ 0:05 lm2 for different pressure loading lengths

2a. In this figure, the surface displacements vðx; 0Þ and the position x have been normalized by half pressure

loading length a, and it is observed that the normalized curves vðx; 0Þ=a for different a do not coincide as it

is the case for the classical solution. The solid line on the same figure depicts the classical solution. It shows

that a decrease in the loading length causes a decrease in the normalized deformed depth. The curves

converge to the solid line representing the classical solution as the length increases in Fig. 6. So, when the
length associated with the deformation field is large, the influence of strain gradients on the deformation is

small and classical elasticity theory suffices. It is also justified that effect of strain gradient becomes

important when indentation tests are on small-scale such as micro-indentation test or nano-indentation

tests at the sub-micron scale (Fleck and Hutchinson, 1997). The result due to the effect of strain gradients in

elasticity is interestingly consistent with size effect in plasticity that hardness increases with decreasing

indent size (Shu and Fleck, 1998; Matthew and Hutchinson, 1998). The effect of the magnitude of gradient

coefficients c on deformation is illustrated in Fig. 7. Here, the same elastic solid as in Fig. 6 is used with

loading length 2a being 1.0 lm. The curves were generated for different gradient coefficient c, with the solid
line representing the classical solution. It is observed that materials with larger gradient coefficient c have



Fig. 6. Normalized deformed surface profiles due to constant pressure for several loading lengths 2a and gradient coefficient

c ¼ 0:05 lm2.

Fig. 7. Deformed surface profiles for several gradient elasticity coefficient c, for loading length 2a ¼ 1:0 lm.
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smaller deformed depth. It also can be shown that the influence of gradient coefficient c on the deformation
is more pronounced as the loading length decreases.

From the above three figures, the analytical solution within the gradient elasticity for elastic solids due to

a constant contact pressure appears to be an excellent means to show the effect of strain gradient in the

deformation of elastic solid. It shows that loading size at small scales play an important role in the

deformation of elastic materials due to incorporating the gradient coefficient c in the constitutive law.
6. Conclusions

A simple gradient theory of elasticity with an additional material parameter (gradient coefficient c) is
used to obtain a general solution for a two-dimensional solid subjected to a symmetrical line loading with
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prescribed normal tractions pðxÞ. Integral transformation technique is used in the solution and higher order

conditions are utilized. To gain insight on the influence of loading size on the deformation of elastic

materials as inferred by the gradient coefficient c, the analytical solution for semi-infinite elastic solid

subjected to a constant surface pressure is investigated for different loading lengths and gradient coefficient
c. It is shown the effect of strain gradient in elasticity becomes significant for the kind of line loading

problem at small scales, when compared with classical elasticity.
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Appendix A

The strain-energy density in Casal’s continuum (Casal, 1972) with respect to a Cartesian coordinate

system expressed as
W ¼ 1

2
keiiejj þ Geijeji þ l2

1

2
kokeiiokejj

�
þ Gokeijokeji

�
þ l0vkok

1

2
keiiejj

�
þ Geijeji

�
; ðA:1Þ
where l, l0 are characteristic material lengths, and vk, okvk ¼ 0, is a director field equal to the unit outer

normal nk on the boundaries. It can be shown that after integrating W over the domain and applying the

Stokes theorem, the last term in Eq. (A.1) takes the form
l0 G
Z
oX

eijeij dA
�

þ 1

2
k
Z
oX

eiiejj dA
�
;

which can be interpreted as surface energy. Total strain energy given in Eq. (A.1) is positive-definite for

3k þ 2G, G > 0, and l, l0 P 0. In the strain-energy Eq. (A.1) from Casal’s continuum (Casal, 1972), the

Cauchy stresses sij, the couple stresses lkij and the total stresses rij with respect to a Cartesian system are

defined as
sij ¼ oW =oeij ¼ kdijekk þ 2Geij þ l0ðkdijvkokell þ 2GvkokeijÞ; ðA:2Þ

lkij ¼ oW =oeij;k ¼ l2ðkdijokell þ 2GokeijÞ þ l0ðkdijvkell þ 2GvkeijÞ; ðA:3Þ

rij ¼ sij � oklkij ¼ kdijekk þ 2Geij � l2r2ðkdijell þ 2GeijÞ: ðA:4Þ
From strain energy (A.1), the variation of the total potential energy in a volume X, which is bounded by the

smooth surface oX, is obtained by using the divergence theorem and the surface divergence theorem:
d
Z

X
W dV ¼ �

Z
X
oirijduj dV þ

Z
oX
f½nirij � Dt

iðnklkijÞ þ ðDt
lnlÞnknilkij�duj þ nknilkijðnmomujÞgdA;

ðA:5Þ
Dt
i stands for the derivatives in the tangential direction to the boundaries.

Based on the principle of virtual work, it is assumed that the potential energy has the form
d
Z

W ¼
Z

Fjduj dV �
Z

½Tjduj þ QjðoiujniÞ�dA; ðA:6Þ

X X oX
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where Fj is the external body force, Tj and Qj are traction and double traction on the boundary, respec-

tively. From Eqs. (A.5) and (A.6), it follows that the equation of equilibrium is
oirij þ Fj ¼ 0 ðA:7Þ
and the boundary conditions are
uj ¼ �uj or nirij � Dt
iðnklkijÞ þ ðDt

lnlÞnknilkij þ Tj ¼ 0; ðA:8Þ

njojui ¼ Ei or nknilkij þ Qj ¼ 0; ðA:9Þ
where �uj and Ei are prescribed on the appropriate portion of the boundary.
It is noted that the constitutive equations and equilibrium equations in a simple gradient theory of

elasticity introduced by Aifantis and co-workers (Aifantis, 1992; Altan and Aifantis, 1992) reads
r ¼ kðtr eÞIþ 2Ge � cr2½kðtr eÞIþ 2Ge�; ðA:10Þ

divr ¼ 0: ðA:11Þ

It is apparent that the constitutive Eq. (A.4) and equilibrium Eq. (A.7) in Casal’s continuum theory with

c ¼ l2 and l0 ¼ 0 are the same as those in the simple gradient theory of elasticity given in Eqs. (A.10) and
(A.11) in a Cartesian coordinate system. Hence Casal’s continuum theory can be used to derive the

boundary conditions for a boundary value problem in the simple gradient theory of elasticity in a rigorous

way.

The desired boundary conditions are obtained from Eqs. (A.9) and (A.11). For simplicity, it is assumed

that there are no double tractions on the boundaries, i.e.,
nknilkij ¼ 0 ðA:12Þ
or
cðkdijokell þ 2GokeijÞnkni ¼ 0: ðA:13Þ
The extra boundary condition (A.13) may be used together with either displacement boundary conditions

or traction boundary conditions. Altan and Aifantis (1997) showed that there exists uniqueness of solution

for equilibrium Eq. (A.11) with the extra boundary condition (A.13) and displacement boundary condi-

tions. For the traction boundary conditions, it should be noted that, in Eq. (A.8), �Di
tðnklkijÞþ

ðDt
lnlÞnknilkij is not necessarily equal to zero. Therefore the classical form of traction boundary condition

ðnirij þ Tj ¼ 0Þ is no longer the natural boundary condition in the present case though it has been used as

one of the physically acceptable boundary conditions in the simple gradient theory of elasticity.
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