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Abstract

A semi-infinite elastic solid subjected to line loading is considered with higher order boundary conditions is utilized
to obtain a general solution in terms of Fourier integral transforms for a symmetrical line loading with prescribed
normal tractions. The boundary conditions are obtained by variational method and shown that they differ from the
boundary conditions reported in the literature for the simple theory. Closed form solutions are then obtained for a
concentrated normal force (the Flamant problem), for constant normal traction, and a typical Hertzian normal traction
distribution from classical elasticity. It is verified that undesirable displacement singularity predicted by classical
elasticity in the Flamant problem is eliminated by the gradient elasticity solution. The solution for constant normal
tractions also illustrate the capability of gradient elasticity to predict size effect by taking into account the effect of
micro-structure, which classical elasticity does not adequately describe.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Line loading; Gradient elasticity; Fourier integral transforms; Variational method; Flamant problem; Size effect

1. Introduction

For linear elastic materials with micro-structure, Mindlin’s generalized elasticity theory (Mindlin, 1964,
1965) provides a general framework for developing strain—gradient theories. Mindlin’s generalized elasticity
theory has been widely used to revisit problems where classical elasticity yields physically undesirable re-
sults. For example, Vardoulakis and Georgiadis (1997) have shown the existence of SH surface waves in a
homogeneous half-space within the framework of the generalized linear theory of elasticity, which cannot
be predicted by the classical theory of linear elasticity. They also investigated the anti-plane shear Lamb’s
problem (Georgiadis and Vardoulakis, 1998). Zhang et al. (1998) used the couple stress theory (Toupin,
1962; Koiter, 1964; Mindlin, 1964, 1965) to obtain the mode III full-field solution in elastic materials with
strain gradient effects, and they showed that their evaluation results in a finite crack tip energy release rate
which when evaluated by classical theory leads to an infinite value. Altan and Aifantis (1992) used a simple
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gradient theory of elasticity to solve the mode-III crack problem and found that the gradient theory can
eliminate the undesirable singularity at the crack tip. Aifantis (1996) has shown that the gradient theory can
successfully be used to interpret size effects exhibited by elastic boreholes and twisted wires. Within the
context of the simple gradient theory of elasticity, Gutkin (2000) described the elastic property of dislo-
cation and disclinations. The main achievement made in this approach is the elimination of the classical
singularities at the defect line and the possibility of describing short-range interactions between defects on a
nanoscale level.

The modification of the constitutive equation proposed by Mindlin (1965) within the framework of
gradient elasticity reads

6 =1—cIV? =, VV)(tre) + 2G(1 — ¢3V?)e, (1)

where 1 and G are the Lame’s constants, ¢ and & denote elastic stress and strain tensors, respectively, I is the
unit tensor, V2 is the Laplacian operator, and c;, ¢, and c¢; are three independent material constants.

The above formulation involves five elastic constants, and application of it to practical situations poses
difficulties. A simplification to Eq. (1) was proposed by Altan and Aifantis (1992) who considered the
special case, ¢; = ¢3 = ¢, and ¢, = 0. Hence, with this simplification, Eq. (1) becomes

o = A(tre)l +2Ge — cV2[A(tre)l + 2Ge). (2)

Altan and Aifantis (1992) used Eq. (2), along with the equilibrium equation, dive = 0, to solve the mode-
IIT crack problem and found that the strain is finite at the crack tip. They also showed that for an atomic
lattice, the gradient coefficient ¢ can be estimated as ¢ = (0.254), where 4 is the lattice constant. More
generally, 24 is the characteristic length of the material cell for materials with unit cell (micro-medium),
which may be interpreted as the periodic structure of a crystal lattice, a molecule of a polymer, a crystallite
of a polycrystalline or a grain of a granular material (Mindlin, 1964). Internal characteristic length # is
typically of the order of 107 m for some crystal lattices, and 10~* m for some granular materials
(Vardoulakis and Georgiadis, 1997). Hence, the value of ¢ covers a large range for materials with different
size of micro-medium. The determination of ¢ by experiments is currently under way.

Constitutive Eq. (2) and equilibrium equation dive = 0 can also be obtained from Casal’s continuum
(1972) in absence of surface energy, in which higher order stresses are the work conjugate of strain gradient
variation. In this way, the boundary conditions are obtained by means of the variational method from
Casal’s continuum in the absence of double traction on the boundary surface y = constant (Appendix A) as

/152]‘62811 + 2G6282j =0. (3)
In the terms of the components of displacement field (u,v) for the plane strain problem, Eq. (3) yields

Uy T Uy = 0, (4)

Ay +v,,) +2Gv,, = 0. (5)

The extra boundary conditions (4) and (5) are different from those used in the simple strain gradient theory
of elasticity (Altan and Aifantis, 1992; Ru and Aifantis, 1993) in which it is assumed that second partial

derivative of displacement normal to the boundary is zero 2,2_1121 =0), or

u>,"}’ = 07 (6)

Uy =0 (7)
for boundary y = constant. Although the boundary condition 227‘2' = 0) has been used in the literature, the
authors were not able to find any discussion explaining how they were obtained. Egs. (6) and (7) imply that

v, can be neglected with respect to u,,,, and u,,, can be neglected with respect to v,,,. Since these conditions
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in general cannot be justified, the boundary conditions (4) and (5) are used in the solutions presented in this
paper.

Ru and Aifantis (1993) later proposed a simple approach to solve boundary-value problems using the
simple gradient theory of elasticity and established a simple relationship between the “gradient” dis-
placement and the “classical” displacement for a traction-prescribed boundary-value problem as

(1—cVHu=1', (8)

where u is the displacement field considering gradient theory of elasticity, and u® is the displacement field
considering classical theory of elasticity.

One of the particular problems Ru and Aifantis (1993) solved using Eq. (8) with the boundary conditions
(6) and (7) is the Flamant problem. By their approach, one extra boundary condition was needed to obtain
a closed form solution for this problem. The solution obtained by them is complicated which makes it
difficult to obtain a closed form solution for arbitrary line loading by superposition of the fundamental
solution of the Flamant problem. In this paper, instead of superposition and boundary conditions (6) and
(7), Fourier integral transforms with boundary condition (4) and (5) are used to obtain a general solution
for a symmetrical line loading with prescribed normal tractions. The solution for the Flamant problem is
then derived from the general solution as a special case without the need for any extra boundary conditions.

In what follows, a plane strain problem for a symmetrical line loading with prescribed normal tractions
on a semi-infinite elastic solid is considered using gradient elasticity. The Navier equations of equilibrium of
the plane strain problem are solved systematically using integral transformation techniques and general
solutions for the plane strain problem are obtained using boundary conditions (4) and (5). The analytical
solutions for the Flamant problem are derived from the general solutions to demonstrate how gradient
elasticity can eliminate the singularity at the point of application of the load as predicted by classical
elasticity. The analytical solutions obtained for constant normal tractions are also derived and compared
with the classical solution. The solutions are used to demonstrate the influence of the gradient coefficient ¢
on the deformation under constant normal traction and the size-dependency of the resulting deformation,
i.e. the displacement normalized by length over which the load is applied becomes smaller with decreasing
the length, a trend different from size-independency implied by classical elasticity.

2. Formulation for plane strain problem

The displacement field for the plane strain problem is assumed to be of the form
u=u(x,y), v=v(x,y) and w=0. 9)
The components of strain tensor corresponding to these displacements are
Ou ov Ou @

ax*a, Syia, yxyzaJrax, &=0, 7.,=0 and 7,=0. (10)
The constitutive Eq. (2) can be rewritten as

0y = Aewly; + 2Gey — c{Aewdy; + 2G8,:,-}7mm (11)
and the components of the stress tensor are

0, = A+ &) + 2Ge, — c{A(ec + &) + 2Ge, }m (12)

0, = Mec + &) + 2Ge, — c{Alex + &) + 2Ge, } m (13)

0. = Aer+ &) — c{ilec + &) }mm (14)
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Txy = 2G8xy - 2Gc{8xy}'>mm

and
7. =0, 71,.=0.

Substitution of the stresses o;; into the equilibrium equations in the absence of body forces

gi;;, =0
yields
z(?éﬁggy) +2G2j;‘—cv2{<2; +,§avy> +2G22L2l} +G(22}Z 6?(261;/)
cGV2<giyL2l+%> =0,
i(gg +Siy§> +2Ggiy12’—cv2{z<§a” +Ziy”) +2G%} +G<£j§y+%>
ch2(§a”y+2:> ~0

(18)

Taking Fourier transformation of Egs. (17) and (18) and rearranging the results along with the relationship

) B d2 ) B
[T (G5-¢) [ rensa (19)
the following equations are obtained:
d‘a L[ d’s , de ).
—Glc dy“ (1+c§) + (A+2G)¢ cdy2 (14 c&)u {(A—b—G)é cd_y3_(l cé o i=0,
(20)
d*s N | d%D 5 d*u ,oda | |,
(A+2G6) cd—y4—(1 g)d—y2 + G¢ Cdyz (1 +¢&) (A+ G)¢ cdy3—(1+cé)d— 1i=0,
(1)
where
(e = [ utryea
o(&,) =/ o(x,y)e' dx,

are the Fourier transforms of u(x,y) and v(x,y), with the inverse transforms

u(x,y) = i /jc u(g, y)e

1 o .
5 [ itene e

g,

v(x,y) =
and i = v—1.
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Letting
d’u .
P:cd—yz—(1+c§ )i (22)
and
Q—cdj’— (1+c&) (23)
=< 4n .
Eqgs. (20) and (21) become
d’p s do.
—Gd—yz—&-(i—l—2G)§P+(A+G)éd—yl—0 (24)
and
d’o 5 dp.
_(}"+2G)d—yz+G§ Q+(/1+G)£d—yl_0. (25)

From Egs. (24) and (25), it follows that
2 2

2 2
(;—yz—gﬂ) P=0 and <(f—y2—52) 0=0.

P = (a1 + ay)e? + (a3 + agy)e” (26)

So

and
0 = (as + agy)el™™ + (a7 + agy)e ™, (27)

where a;—ag are constants.
The expressions of # and ¥ can be derived from Egs. (22), (23), (26) and (27), along with the condition
that # and v both go to zero as y goes to infinity

i=1e VD 4 (b + koy)e (28)
and
0= Le Ve o (ks + kyy)e 1. (29)

Here I, 15, ki, k», k3, k4 are functions of £.
Taking Fourier transformation of Egs. (12), (13), (15) and using Eqs. (28) and (29) yields the stress
components in the transformed domain as

G, = A[(1 = 2¢& — |Ey)ks — k3|EJe ™Y — (4 2G)E[(2¢|¢] + y)ks + ky]e ™11, (30)

Gy = (A+2G)[(1 = 2c& — |E|y)ks — ks |E[Je ™ — AE[(2¢|é] + y)ka + ky]e Vi (31)
and

Ty = G[(1 = 2¢& — &)k — ky[E]]le™ Y — GE[(2c|é] + y)ks + ksle Vi, (32)

Also, when # and 7, given in Egs. (28) and (29), respectively, are substituted in Egs. (20) and (21) the
relationship between ki, k», k3 and k4 are obtained as
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ky = Sign (&)kai (33)
and

A+3G N

mkz - ikg,l + Slgn (ﬁ)kl == 0 (34)

3. General solution for semi-infinite elastic solid subjected to a symmetrical line loading

In this section the deformation of a semi-infinite elastic solid body subjected to an external pressure at its
bounding surface is considered. The elastic medium is bounded by a plane of infinite extent y = 0 as shown
in Fig. 1. The y-axis is taken normal to the plane of the otherwise unbounded medium and points into the
semi-infinite medium. It is assumed that this domain is under the action of a surface pressure p applied
along the x-axis, which varies along the surface.

For simplicity, p(x) is taken as an even function of x which results in symmetrical deformations, i.e.,

u(—=x,y) = —u(x,y) (35)
and

v(=x,y) = v(x, ). (36)
The symmetrical deformation field then in turn leads to

k(=0 = —ki(S), k(=) =-k(), hL(=¢)=-h(%),

k(=€) = ks(8), k(<) = ka(Q),  L(=¢) = h()

and

1 e

u=-— u(&,y)sin(éx) dé¢, (37)

0

px)

Semi-infinite
Solid

Fig. 1. Semi-infinite elastic solid subjected to an even surface pressure p(x).
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o= [ atecosten de (38)
The relevant traction boundary conditions are adopted as

ay = —p(x), (39)

Ty =0, (40)
at y = 0.

Eq. (40) results in
(1 =28k, — Eky — E(2Ecky + k3)i = 0. (41)

Hence, the coefficients &y, k,, k3 are solved in terms of k4 using Eqs. (33), (34), and (41) for £ = 0

_ (2. G NI
ki = <2c5 +7o G 51‘4’ (42)
ks = ki, (43)

J+2G\ 1

_ _ 2 -
k3—< 208 + JV+G)£k4. (44)

Subsequently, the boundary condition (39) together with the expressions for &, &, k3 in terms of k4 and Eq.
(31), yields the stress components g, at y =0 as

1 [~ 2G [~
o= / G, cos(éx)dé = - k4(&) cos(&x)dé. (45)
0 0
Hence
h _ ()
| m@eos(ena =22 (46)
and the expression for k; can be obtained as
1 o0
AGEE / p(x) cos(&x) d. 47)
0

To solve for the constants /; and /,, the extra gradient boundary conditions (4) and (5) are required as a
result of the higher gradient terms utilized.
Eqgs. (4) and (5), together with Egs. (28), (29) and (37), (38), yield

1 1 . .
1(E+ 52>11 - E+ El +18k — 2ilky — Eky + Eky =0 (48)

and

i/ % + &0 + (2 +26) (é + 52> b + 128k — 14éky + (4 2G)Ehks — 2() 4 2G)éky = 0, (49)
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which implies

200+ 2G)¢ M1+ 28%) +2eGE\ 1+ 42

1(8) =ic 1 P26+ 204 GO iy 2 ks (50)
and
2c& {,1(1 +2¢8) + Zng\/;EEz}
12(‘5) = ky. (51)

426 +2c(Z+ G) &1+ &

Substitution of Eqs. (42)—(44) into Eqgs. (30)—(32) for ¢ > 0 and taking inverse Fourier transforms yields the
stress components as

0= =29 [7 ki1 - &) cos(en de, 2
0

26 [ :
0= =2 [Tkt + e conten e, >
6= =22 [ e sin(ende, Y

which show that stress distribution is only dependent on k4, and k4 is not related with the extra gradient
boundary conditions. From Eq. (47) it can be seen that kg4 is a function of the loading p(x). Hence, the stress
distribution obtained here remains the same as the one in classical elasticity. Ru and Aifantis (1993) have
shown that the stress distribution obtained with the boundary conditions (6) and (7) was identical with the
one in classical elasticity also. However, the displacement field dependent which is dependent on /; and /,
will differ for the two sets of boundary conditions.

Particularly, the surface displacement # and v may be derived by substituting Eqs. (42)-(44) and (50),
(51) into Eqgs. (28) and (29), and using Eqgs. (37) and (38) at y = 0:

u(x,0) = / ) {mf) ~dieck(d) ~ iy ém(é)} sin(&x) de (55)
and
w0 =2 [ [lz(f) 20tk () + 50 ém(@} cos (&) dz. (56)

It can be shown that the surface displacements represented by Egs. (55) and (56) reduce to the classical
solution at ¢ = 0. Once k4 is obtained, the surface displacements due to arbitrary symmetrical line loading
with prescribed normal traction can be obtained from Egs. (55) and (56). The solution for three typical
surface pressure distributions are shown in the following.

4. Solutions for special surface pressure distributions
As special cases to the above general solution, the problem with a typical Hertzian pressure distribution

in classical elasticity for |x| < a, the Flamant problem and constant pressure for |x| < a will be discussed (see
Fig. 2).
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p

e

y y

@

©

Fig. 2. Special surface pressure distribution: (a) a typical Hertzian pressure distribution; (b) concentrated force; (¢) constant surface
pressure.

4.1. A Hertzian pressure distribution for |x| < a from classical elasticity

A typical Hertzian pressure distribution p(x) (Johnson, 1985) on the surface in classical elasticity is
defined by the relation

{p(x) :po(l —2—?)1/2 x| <a,

px)=0 x| > a.
Substituting this pressure distribution into Eq. (47), k4 is solved as

npoJi (aé)
2G¢

The surface displacements are determined by substituting &4 from Eq. (57) into Egs. (50), (51) and Egs. (55),
(56).

k4(§) = (57)

4.2. Flamant problem

For the Flamant problem, a point force of magnitude p acts at the origin of the coordinate system on the
boundary surface. For this case, k4 can be calculated from Eq. (47) by assuming p acting over a length of 2a
(]x| < a) and then letting a — 0, i.e.

_EIE%G/ — cos(¢&x)dx

The components of the surface displacement are obtained by substituting the expression k4 into Egs. (50),
(51) and Egs. (55), (56). Due to their complicated form, the expressions for surface displacements are not
given here. It is shown that the surface displacement in y direction be finite at the origin (0,0) in Section 5.
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It should be noted that the gradient elasticity solution reduces to the classical elasticity solution

(Johnson, 1985) by letting ¢ = 0 in Egs. (55) and (56), considering £2¢ = 4(1‘;"2), A= Ao
—(1=2»)(A +v)p
ux,0) =~ 2P (58)
2(1 =12
o(x,0) = % plogx + Cy. (59)

Hence, the gradient elasticity solution to the Flamant problem is obtained relatively easily using the integral
transformation techniques, and the singularity at the origin predicted by the classical elasticity solution
disappears.

4.3. Constant surface pressure for |x| <a

px)=p |x|<a.
In like fashion,

(o) =20,

The surface displacements obtained by substituting the expression &4 into Egs. (50), (51) and Egs. (55), (56)
are evaluated by using MATHEMATICA in Section 5.

The gradient elasticity solution reduces to the classical elasticity solution (Johnson, 1985) by letting ¢ = 0
in Egs. (55), (56).

(60)

—po(14v)(1-2v

ol +}€>( ‘)x, ‘x‘gm

u(e,0) = § OS2, s
Lv)(1-2v

p(+)(-2) 11)5( g, x<-—a.

and

v(x,0) = %E—vz) [(x +a)log (%)

5. The results

The surface displacement in y direction due to the typical Hertzian pressure distribution (py = 150 G N/
m, loading length 2a = 1.0 um) and classical one are plotted in Fig. 3 for an elastic solid with £ = 135 GPa,
v=0.3, ¢ = 0.05 pm>. The value of ¢ chosen is in the range of given for some materials in the paper
(Vardoulakis and Georgiadis, 1997). The x distance and the displacement are normalized by a. It is shown
in Fig. 3 that the normalized deformed depth at origin in gradient elasticity is smaller than the one in
classical elasticity.

To illustrate the gradient theory can eliminate the undesirable singularity for the Flamant problem, the
solutions in the y direction for the Flamant problem and classical one are plotted in Fig. 4 for the same
elastic solid as in Fig. 3. It is assumed that the displacement in the y direction on the surface is zero at a
distance xo = 1.0 pum. The x distance and the dlsplacement are normalized by xy an
the normalized displacement in y direction V'(5,0) = 2(1 (x 0). Fig. 4 shows that the dlsplacement at the
origin is finite, and also ==~ do( 00 =0, i.e. the symmetry of dlsplacement with respect to x-axis is naturally
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0

.50

w(x,0)/a

-4.00 -3.00 -2.00 -1.00 0.00 1.00°  2.00 3.00 4.00
xla

Fig. 3. Comparison of the surface displacement between gradient solution and the classical solution for Hertzian pressure distribution
with loading length 2a = 1 pm.

0
0.50
1.00
P
< 1.50
X
2.00 _— Classical
—_——— Gradient
2.50
-1.00 -0.50 0.50 1.0C

n

Fig. 4. Comparison of the surface displacement between gradient solution and the classical solution for Flamant problem.

satisfied. Ru and Aifantis (1993) had to use this symmetry as an extra boundary condition to achieve the
solution, through their simple approach with the boundary condition (6) and (7).

The deformed surface profiles in Fig. 5(a) are plotted by using the classical solutions for the same elastic
solid subjected to the same constant pressure (py = 150 G N/m) applied over a length of 2a where a is varied
from 0.2 to 1.0 um. After being normalized by half pressure loading length a, the plots of the depth v(x, 0)/a
vs. position x/a all lie on the same curve irrespective of the length 2a as shown in Fig. 5(b). Classical
elasticity, by its scale-free nature, cannot predict the size-dependency of the resulting deformation.

In gradient elasticity, the solution obtained is used to demonstrate size-dependency of the resulting
deformation. The deformed surface profiles in Fig. 6 are plotted by using the analytical solutions for the
same elastic solid as in Fig. 3 subjected to the same pressure applied over the length of 2a. The curves in
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0

v(x,0) (m)

-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00
(a) x (um)

w(x,0)/a

——— a=04pum

+ a=02um

-4.00  -3.00 -2.00 -1.00  0.00  1.00  2.00  3.00  4.0C
() x/a

Fig. 5. (a) The deformed surface profiles for several loading length 2a as predicted by classical elasticity. (b) Normalized deformed
surface profiles due to constant pressure for several loading lengths 2a as predicted by classical elasticity.

Fig. 6 were generated with a constant gradient coefficient ¢ = 0.05 um? for different pressure loading lengths
2a. In this figure, the surface displacements v(x, 0) and the position x have been normalized by half pressure
loading length a, and it is observed that the normalized curves v(x, 0)/a for different @ do not coincide as it
is the case for the classical solution. The solid line on the same figure depicts the classical solution. It shows
that a decrease in the loading length causes a decrease in the normalized deformed depth. The curves
converge to the solid line representing the classical solution as the length increases in Fig. 6. So, when the
length associated with the deformation field is large, the influence of strain gradients on the deformation is
small and classical elasticity theory suffices. It is also justified that effect of strain gradient becomes
important when indentation tests are on small-scale such as micro-indentation test or nano-indentation
tests at the sub-micron scale (Fleck and Hutchinson, 1997). The result due to the effect of strain gradients in
elasticity is interestingly consistent with size effect in plasticity that hardness increases with decreasing
indent size (Shu and Fleck, 1998; Matthew and Hutchinson, 1998). The effect of the magnitude of gradient
coefficients ¢ on deformation is illustrated in Fig. 7. Here, the same elastic solid as in Fig. 6 is used with
loading length 2a being 1.0 um. The curves were generated for different gradient coefficient ¢, with the solid
line representing the classical solution. It is observed that materials with larger gradient coefficient ¢ have
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0

w(x,0)/a

-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00
x/a

Fig. 6. Normalized deformed surface profiles due to constant pressure for several loading lengths 2a and gradient coefficient
¢ =0.05 um?.

0
0.50
1.00
3
é 1.50
5
k4
2.00 i
Classical
- - ¢ =0.02 um*
——— ¢=0.06um’
3.00 ’
............... ¢ =0.10 um?

-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

Fig. 7. Deformed surface profiles for several gradient elasticity coefficient ¢, for loading length 2¢ = 1.0 pm.

smaller deformed depth. It also can be shown that the influence of gradient coefficient ¢ on the deformation
is more pronounced as the loading length decreases.

From the above three figures, the analytical solution within the gradient elasticity for elastic solids due to
a constant contact pressure appears to be an excellent means to show the effect of strain gradient in the
deformation of elastic solid. It shows that loading size at small scales play an important role in the
deformation of elastic materials due to incorporating the gradient coefficient ¢ in the constitutive law.

6. Conclusions

A simple gradient theory of elasticity with an additional material parameter (gradient coefficient c) is
used to obtain a general solution for a two-dimensional solid subjected to a symmetrical line loading with
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prescribed normal tractions p(x). Integral transformation technique is used in the solution and higher order
conditions are utilized. To gain insight on the influence of loading size on the deformation of elastic
materials as inferred by the gradient coefficient ¢, the analytical solution for semi-infinite elastic solid
subjected to a constant surface pressure is investigated for different loading lengths and gradient coefficient
c. It is shown the effect of strain gradient in elasticity becomes significant for the kind of line loading
problem at small scales, when compared with classical elasticity.
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Appendix A

The strain-energy density in Casal’s continuum (Casal, 1972) with respect to a Cartesian coordinate
system expressed as

1 1 1
W = 5)”81'1'8.111' + G‘gijsji + 12 (Eﬂﬁksl—,-@kg,j + G@ks,:,-akg,-,-) + l/vk@k (Eis,—isj,- + GSiiji), (Al)

where [, I’ are characteristic material lengths, and v, 0,v; = 0, is a director field equal to the unit outer
normal n; on the boundaries. It can be shown that after integrating W over the domain and applying the
Stokes theorem, the last term in Eq. (A.1) takes the form

l’(G/ S[jSijdA-f-%i/ 8,','8]]d14>,
2Q 2Q

which can be interpreted as surface energy. Total strain energy given in Eq. (A.1) is positive-definite for
342G, G>0, and /, I’ = 0. In the strain-energy Eq. (A.1) from Casal’s continuum (Casal, 1972), the
Cauchy stresses t;;, the couple stresses ,;; and the total stresses g;; with respect to a Cartesian system are
defined as

Tij = 6W/68,j = Aéij‘gkk + 2G8,‘j + l,()uéijvkakgll + 2Gvkak£[j)7 (AZ)
Mkfj = aW/aS,]k = 12(),(5,:,@/(81/ + 2Gak&”) + l/(/"u5,:,-vk811 + 2Gvk81'j)7 (A3)
0jj = Tij — ak/,tklj = )véijgkk + ZGSU — ZZVZ(;Lé,'jS[[ + 2G81j) (A4)

From strain energy (A.1), the variation of the total potential energy in a volume 2, which is bounded by the
smooth surface 0, is obtained by using the divergence theorem and the surface divergence theorem:

5/ wdyv = —/at”f/5U/dV+/ {[nioy — Di(mipu;) + (Dymp)minipiy | 0w + nnipiyg;(n,Oa) } 4,
Q Q oQ
(A.5)

D! stands for the derivatives in the tangential direction to the boundaries.
Based on the principle of virtual work, it is assumed that the potential energy has the form

Q Q oQ
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where F; is the external body force, 7; and Q; are traction and double traction on the boundary, respec-
tively. From Egs. (A.5) and (A.6), it follows that the equation of equilibrium is

0,05 + F; =0 (A7)
and the boundary conditions are

u;=1u; Or no;— Dé(nk:ukij) + (Dtlnl)nknfﬂkij +7;=0, (A.8)

n_ia,«ui = F,‘ or nkn,»,uk,-j + Q]‘ = O7 (Ag)

where #; and E; are prescribed on the appropriate portion of the boundary.
It is noted that the constitutive equations and equilibrium equations in a simple gradient theory of
elasticity introduced by Aifantis and co-workers (Aifantis, 1992; Altan and Aifantis, 1992) reads

o = A(tre)l +2Ge — cV*[i(tre)l + 2Ge], (A.10)

dive = 0. (A.11)

It is apparent that the constitutive Eq. (A.4) and equilibrium Eq. (A.7) in Casal’s continuum theory with
¢ = 1% and ' = 0 are the same as those in the simple gradient theory of elasticity given in Egs. (A.10) and
(A.11) in a Cartesian coordinate system. Hence Casal’s continuum theory can be used to derive the
boundary conditions for a boundary value problem in the simple gradient theory of elasticity in a rigorous
way.

The desired boundary conditions are obtained from Egs. (A.9) and (A.11). For simplicity, it is assumed
that there are no double tractions on the boundaries, i.e.,

ity =0 (A.12)
or
c(/lé,-jaksu + ZGakaj)nkl’li =0. (A13)

The extra boundary condition (A.13) may be used together with either displacement boundary conditions
or traction boundary conditions. Altan and Aifantis (1997) showed that there exists uniqueness of solution
for equilibrium Eq. (A.11) with the extra boundary condition (A.13) and displacement boundary condi-
tions. For the traction boundary conditions, it should be noted that, in Eq. (A.8), —Dﬁ(nk,uk,-j) +
(Ding)niniy,; is not necessarily equal to zero. Therefore the classical form of traction boundary condition
(n;o;; + I; = 0) is no longer the natural boundary condition in the present case though it has been used as
one of the physically acceptable boundary conditions in the simple gradient theory of elasticity.
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